COMP432 Assignment 2

Andrew Childs

October 6, 2007

Contents
1 Combinatory Logic 1
2 Combinatory Logic Parsing 3
3 Lambda Calculus 3
4 Lambda Term Parsing 4
5 Combinatory Logic Zipper 6
6 Compilation 8
7 Reduction 10
A Testing 13
B Parser Library 16
B.1 Useful things 19

1 Combinatory Logic
module CL (CLVar, CLTerm(..), drawCLTerm) where

import Data.Tree (drawTree, unfoldTree)

In this section we define the structure of a CLTerm, and a textual representation.

A variable in a CL term is represented by a String containing its name.

type CLVar = String

The recursive definition of a CLTerm forms a binary tree where the leaves are

combinators or variables.

data CLTerm = CLVar CLVar — never ”S” or "K”

o R IR

g
Bstar

ok

CLTerm :$ CLTerm
deriving (Eq)

|
|
|
|
| C
|
|
|
|

A show implementation based on unlambda, which makes the tree structure

more obvious.

instance Show CLTerm where
show (CLVar x) = x

show S = 75"
show K = "K”

show I = 717
show B = "B’
show C = 7C”

show S’ = 7S’”
show Bstar = ”"Bx”
show C’ = 7C’”

show (t1 :$ t2) =
7 ¢” 4+ show tl 4+ show t2

A mapping into generalised rose trees for pretty printing.

drawCLTerm :: CLTerm —> String

drawCLTerm = drawTree . unfoldTree clToTree

where
clToTree (left :$ right) = (?CLApp”, [left ,right])
clToTree x = (show x, [])

2 Combinatory Logic Parsing
module CLParser (parseCLTerm) where

import ParserLib
import CL

This section defines a very simple parser for combinatory logic terms in the

unlambda syntax. Variables are restricted to being single letters.

parseCLTerm :: String —> CLTerm

parseCLTerm = some toplevel

A term is either a combinator, a single letter variable, or recursively the appli-

cation of two such terms (written ‘pq).

toplevel :: Parser Char CLTerm

toplevel = (token ”S” <@ const S) <|>
token "K” <@ const K) <|>
token "I” <@ comst I) <[>
token ”B” <@ const B) <|>
token 7C” <@ const C) <[>

token ”S’” <@ const S’) <[>

token ”"Bx” <@ const Bstar) <|>

token 7C’” <@ const C’) <|>

token 7”7 &> (toplevel <&> toplevel) <@ uncurry (:$)) <|>
satisfy (‘elem‘ [’a’..’z’]) <@ (CLVar . (:[])))

e N N N N N N N

3 Lambda Calculus

module Lambda where

Here we implement the basics of the lambda calculus. Including a recursive
definition of lambda terms, a textual representation and a function to determine
the free variables of a term.

Variables are represented by a String containing their name.
type Var = String

In the pure lambda calculus, there are only abstractions over a single variable,
variables as found in the body of of an abstraction and the application of two

terms.

data LTerm = Var Var
| App LTerm LTerm
| Abs Var LTerm

The textual representation uses a blackslash in place of A

instance Show LTerm where

show (Var x) = x

show (App t1 t2@(App - -)) = show t1 ++ 7_(" ++ show t2 ++ 7)”
show (App t1 t2) = show t1 ++ ”.” ++ show t2

show (Abs x t1) =7(\\” + x ++ 7.7 ++ show t1 ++ 7)”

An abstraction binds a variable. A variable is free then if it is not contained in

any abstraction over that variable.

freeVars :: LTerm —> [Var]

freeVars = freeVars’ []

freeVars’ :: [Var] —> LTerm —> [Var]
freeVars’ bound term =

case term of
Var x | x ‘elem‘ bound —> []
| otherwise — [x]
App t1 t2 — (freeVars’ bound t1) ++
(freeVars’ bound t2)
Abs x t —> freeVars’ (x:bound) t

4 Lambda Term Parsing

module LambdaParser (parseLTerm) where

In this section we define a parser for lambda terms, using the parser library.
import Control.Arrow as A

import Data.Char (isDigit)

import ParserLib

import Lambda

We allow definitions which map from variables to their A-term values.

type Definition = (Var, LTerm)

A A-term consists of a (possibly empty) set of definitions, followed by the “body”
of a A-term. These two are then combined to remove occurrences of free variables
from the term.

parseLTerm :: [Char] —> LTerm
parseLTerm = some $ ((definitions <|> epsilon) <&> sp body)
<& optionally spaces <@ uncurry expand

The body of a A-term is either an entity or a left-associative sequence of applied
entities.

body :: Parser Char LTerm
body = entity <|> (spacelist entity <@ foldll App)
An entity is a variable, an abstraction, or a body surrounded in brackets.

entity :: Parser Char LTerm
entity = var <@ Var <|> abstraction
<|> (sptoken ”(” &> body <& sptoken 7)”)

An abstraction is a list of variables followed by a body. The list of variables is

“unwrapped” to a series of abstractions of a single variable.

abstraction :: Parser Char LTerm
abstraction ((sptoken 7 (” <&> sptoken "\\”) &>
sp (varlist <& sptoken ”7.”))

<&> sp (body <& sptoken 7)7)
<@ uncurry abstract

where
abstract :: [Var] —> LTerm —> LTerm
abstract varlist body = foldr Abs body varlist

A variable is entirely lower case, starting with an alphabetic character and
consisting of alphabetic characters or digits.
var :: Parser Char Var
var = satisfy (‘elem‘ [’a’..’z’])
<&> star (satisfy (‘elem‘ ([’a’..’z’] ++ ['07..797])))

varlist :: Parser Char [Var]

varlist = spacelist var

We generally allow our tokens to have space preceding them in an attempt to

be tolerant of whitepsace.

sptoken :: String —> Parser Char String
sptoken = sp . token

We allow definitions of the form of Haskell-like “let”-statements.

definitions :: Parser Char [Definition]

definitions = sptoken ”let.” &>
neListOf def (sptoken ”;”)
<& sptoken ”in.”

def :: Parser Char Definition
def = (sp var <& sptoken ”=") <&> sp body <@ uncurry (,)

Expand all occurrences of free variables only with the definitions from the let

statement.

expand :: [Definition] —> LTerm —> LTerm
expand = expand’ []

expand’ :: [Var] —> [Definition] —> LTerm —> LTerm
expand’ boundVars defs term =
case term of
Var x | x ‘elem‘ boundVars —> Var x
| otherwise —> expand defs $§ getVar x
App t1 t2 —> App (expand’ boundVars defs t1)
(expand’ boundVars defs t2)
Abs x t —> Abs x (expand’ (x:boundVars) defs t)
where
getVar x =
maybe (error $ ”"Unable_.to.find_definition._for_variable.’
++ show x)
id $ lookup x defs

)

5 Combinatory Logic Zipper
{—# LANGUAGE PatternGuards #-}
module CLZipper where

import CL

Here we define specialised version of a zipper[1] for CLTerm binary trees.

The functions focus and mkZipper wrap and unwrap a tree of CLTerms. Nav-
igation is then possible with the primitive navigation functions likeparent,
leftChild and rightChild.

A Location defines a focus, which is a subtree of terms, and a path, which

records how this location was reached.

data Path = Top
| LNode CLTerm Path
| RNode Path CLTerm

data Location = Location CLTerm Path

mkZipper records the path as Top, indicating this is the top of the tree. focus

retrieves the focus of the zipper, which may be a subtree.

mkZipper :: CLTerm —> Location

mkZipper x = Location x Top

focus :: Location —> CLTerm

focus (Location x _-) = x

To navigate to a child of a CLTerm, we change the focus to point to the child
by examining the constructor of the current focus. The child that is not being
navigated to is stored in the path. The functions are defined in terms of a

monad to allow for failure.

leftChildM :: (Monad m) => Location —> m Location

leftChildM (Location (left :$ right) up) =
return $ Location left (RNode up right)

leftChildM _ = fail ”leftChild _of_bottom”

rightChildM :: (Monad m) => Location —> m Location

right ChildM (Location (left :$ right) up) =
return § Location right (LNode left up)

rightChildM _ = fail ”rightChild .of_bottom”

To navigate to a parent is to revert the 1leftChild and rightChild operations.
The current focus becomes a child, while the other child is retrieved from the

path. The path then discards the current layer.

parentM :: (Monad m) => Location —> m Location
parentM (Location focus Top) = fail ”parent.of._Top”
parentM (Location focus (LNode left up)) =

return $§ Location (left :$ focus) up
parentM (Location focus (RNode up right)) =

return $§ Location (focus :$ right) up

A pure version of the above, each of which fails with error.

parent , leftChild , rightChild :: Location —> Location
parent = maybe (error ”parent.of.Top”) (id) . parentM
left Child = maybe (error ”leftChild._of_bottom”) (id) leftChildM
rightChild = maybe (error ”rightChild_of_bottom”) (id) rightChildM
Repeated applications of parent
ancestor :: Int —> Location —> Location
ancestor 0 loc = loc
ancestor n loc

| (Just p) <— parentM loc = ancestor (n—1) p

| otherwise = loc
root :: Location —> Location
root loc | (Just p) <— parentM loc = root p

| otherwise = loc

Focus value manipulation.
changeFocus :: (CLTerm —> CLTerm) —> Location —> Location
changeFocus f (Location x z) = Location (f x) z
putFocus :: CLTerm —> Location —> Location
putFocus = changeFocus . const

6 Compilation

module Compile where

In this section we describe abstraction elimination for combinatory logic terms.

import CL
import Lambda

The compilation from A-terms to combinatory logic terms.
compile :: LTerm —> CLTerm

A variable remains untouched.

compile (Var v) = CLVar v

Application compiles to the application of the compiled subterms.
compile (App t1 t2) = compile t1 :$ compile t2

Abstraction of a variable in a body that doesn’t contain that variable can be

represnted with the constant combinator K.

compile (Abs v t)

| not (v ‘elem‘ freeVars t) =K :$ compile t
A term of the form Az.z is represented as the identity combinator I.
compile (Abs vl (Var v2)) | vl = v2 =1
What to say here

compile (Abs vl t2Q(Abs v2 e))

| vl ‘elem‘ freeVars e = compile’ vl (compile t2)

By distributivity of substitution over application, and examination of the par-

allels in the S combinator, the following rule applies.

compile (Abs v (App tl t2)) =
optimise (S :$ compile (Abs v t1) :$ compile (Abs v t2))

This is a definition of compile for “hybrid” terms, of a lambda abstraction with

a combinatory logic body. The results and reasoning are the same

compile’ :: Var —> CLTerm —> CLTerm
compile’ v (t1 :$ t2)
= optimise (S :$ compile’ v t1 :$ compile’ v t2)
compile’ v (CLVar ¢v) | v=cv =1
| otherwise =K :$ (CLVar cv)
compile’ _ x =K :$§ x

Each of these rules can be seen from examining the reduction rules in section 7.

optimise :: CLTerm —> CLTerm

optimise term =

case term of

S :$ (K :$p) :$ (K:$ q) —>K :$ (p :$ q)

S :$§ (K :$p) :$1 —> p

S :$ K :$p) :$ (B :$q :$r)—> Bstar :$p :$q :$r
S :$ (K :$p) :$q —> B :$ p :$ ¢

S :$ B :$p :$q) :$(K:$r)—>C :$p:$q:8$r

S :$p % (K :$ q) —>C :$p :$q

S :$ B :$p :$q) :$r —> S’ :$p :$q:%r

X —> X

7 Reduction
{—# LANGUAGE PatternGuards #-}

module Reduce (reduce, reductionStep) where

Here we define the rules for reduction and the strategy for applying them. This

reducer approaches the problem as subtree rewriting.

import CL
import CLZipper

To manipulate the tree of terms, a zipper as defined in section 5 is used. reduce

places the terms into the zipper and retrieves the resulting term.

reduce :: CLTerm —> CLTerm

reduce = focus . root . zipperReduce . mkZipper

The search typically descends into the left subtree. To search the entire tree it is

necessary to search the right branches, which can be reached with forceRightBranch.

forceRightBranch :: Location —> Maybe Location
forceRightBranch loc@(Location _ (LNode _ _))
= forceRightBranch $§ parent loc
forceRightBranch loc@(Location - (RNode - _))
= Just $ rightChild $ parent loc
forceRightBranch loc@(Location _ Top) = Nothing

The right branches contain the arguments of a combinator.

rightBranches :: Maybe Location —> [CLTerm]
rightBranches Nothing =]

10

rightBranches (Just loc) =
focus (rightChild loc) : rightBranches (parentM loc)

Ideally the reduction rules would be written as

reductionStep :: CLTerm —> Maybe CLTerm
reductionStep term =

case term of

S :$x :$y :$ z —>
Just $ (x :$ z) :$ (y :$ 2z)
K:$x :$§ _ —>
Just $§ x
I :$ x —>
Just $ x
B:$f :$¢g:$x —>
Just § f :$ (g :$ x)
C:$f :$g :%x —>
Just $ f :$ x :$ g
S” :$c :$f :$ g :$x —>
Just § ¢ :$ (f :$ x) :$ (g :$ x)
Bstar :$ ¢ :$ f :$ g :$ x —>
Just $ ¢ :$ (f :$ (g :$ x))
C :$c :$f:$g:%x —>
Just $ ¢ :$ (f :$ x) :$ ¢
) —> Nothing

However this approach requires the algorithm unneeded complexity. The re-
duction rule that applies is determined by the leftmost child. reductionStep
looks ahead to find the rule that applies. When the tree is rewritten another
rule will likely apply, which requires the search to resume above the rewritten
tree. Instead we write the rules in terms of the combinator and the arguments,
which results in a new subtree and the location to place it in terms of how many

arguments were consumed.

reductionStep :: [CLTerm] —> Maybe (CLTerm, Int)
reductionStep term =
case term of
S :x :y oz _ —>
Just $ ((x :$ 2z) :$ (v :$ 2) , 3)

11

Just § (x , 2)
I X o —>

Just § (x , 1)
B f g x @ _ —>

Just $ (f :$ (g :$ x) , 3)
C f g x —>

Just § (f :$ x :$ ¢ , 3)
S’ c : f g :x :_ -

Just $§ (¢ :$ (f :$ x) :$ (g :$ x), 4)
Bstar : ¢ : f : g X - >

Just $§ (¢ :$ (f :$ (g :$ x)) , 4)
C :c:f g x o —>

Just $§ (¢ :$ (f :$ x) :$ ¢ , 4)
. _> Nothing

The reduction strategy is then defined as such

zipperReduce :: Location —> Location

zipperReduce loc
The algorithm is driven by the leftmost child.

| (Just left) <— leftChildM loc
= zipperReduce left

If the leftmost child results in a reduction, apply it and continue.

| (Just (x, i)) <— reductionStep
(focus loc
rightBranches (parentM loc))

= zipperReduce $ putFocus x $ ancestor i $ loc

If the end of a tree is reached, continue in a depth-first manner by descending

to a right subtree.

| (Just next) <— forceRightBranch loc

= zipperReduce next
If no more reductions apply the algorithm terminates.

| otherwise

= loc

12

References

[1] HUET, G. The zipper. J. Funct. Program. 7, 5 (1997), 549-554.

A Testing

module Test where
In this section we define a small set of tests for the entire process.

import Test.HUnit

import Lambda
import CL

import LambdaParser

import CLParser

import Compile

import Reduce

s,z :: CLTerm
s = CLVar 7s”
z = CLVar 72”7

A set of definitions for working with Church numerals in the A-calculus.

churchNumericPrelude :: String
churchNumericPrelude =
"let.zeroo.=_(\\s.z.z).;.” +

”

cecosucCoo=c(\\nosez.oso(nesoz)) o+

? _...one...=.succ.zero.;.’ ++

7 LLotwolo.=.succ.one.;.” ++

”

ceoothree_=_succ.two.;.” ++

”

eeoofouro.=_succ_three.;.” ++

7 ooofiveo.=_succ.four.;.” ++

7 ioosixXooo=osuccofivel;l” 4+

” ”

Vcccadd oo =0 (\\xoyoscez . cxeso(yesez)) o+
cecemuloo =0 (\\xoye.cxo(addoy) czero) L’ ++

» s ”
1N

13

A set of definitons for dealing with recursion in the A-calculus, including a fixed

point finder and numeric operations.

numericPrelude :: String

numericPrelude =

\\xoy . x) o5 4+

Wxey . y) -5 27+
\\cond_btrue_bfalse._cond_btrue_bfalse)_;.” ++

7let otrue. .= (
- (
-(
Teveopairei=c(\\Xoyoproj . projoxey) oo’
- (
- (
-(

”

ceoofalse =

”

cooolifolo=

Vcefst oo = (\\x.xotrue) o7+
\\x.x.false).;.” 4++

\\xex) s
cecosuccoo=.(\\n.pair_false.n).;.” ++
ceeopredo.=csndo; L

? _...one...=.succ.zero.;.” ++

»

7 ccosnd o=

RS o

»”

”

coootwolo.=_succ.one.;.” ++

7 _...three_=_succ.two.;.” ++

”

ceeoofour_._=_succ_three.;.” ++

”

ceoofiveo.=_succofour.;.” ++
7 ilosixooo=osuccofivel;l” 4+
7 ioozeropo=_fst.;.” 4+

7ecaddoo o= (\\rum_n. if . (zerop.m).n_(succ_(r-(sndum).n)).)_;." ++

” ”

cecemuleooc=c(\\run.n. if .(zerop.m)._zero_(theta_.addon.(r.(predom).n))) ;.
comedonene=e (\\ X0y y o (xexey)) w57

7 __._..theta_.=_a_a_.;.” ++

ceccandooo=o(\\xoy.xo(y-true_false)._false).;."” ++
ceooorooo=c(\\xoy.xctrueo(yotrueofalse))o;u” ++

”

”

”

7 iceceqocoee=c(\\run.n. if .(and_(zerop.m)._(zerop.n)).” ++

Y truel” 4
"(if_(or-(zerop.m)._(zerop.n)).” ++
"false.” 4+

"(ro(predum).(predc.n)))) oo ++
7 ceechurch =_(\\r.n.s.z.if .(zerop.n)._z_(s_(r-(preden).s.z))).” ++
’7‘_4in‘_4”

A Church numeral-like expression in Combinatory Logic.

toChurchNumCL :: Int —> CLTerm
toChurchNumCL 0 =

14

toChurchNumCL n = s :$ toChurchNumCL (n—1)

To make testing numeric operations in the above numeric encodings, the follow-
ing helpers are defined. They “import” the relevant numeric prelude, compile,
modify the term to return something Church numeral-like, and finally reduce

the term.

churchNumBinary :: String —> CLTerm

churchNumBinary =
let wrap expr = churchNumericPrelude ++ expr
apply-sz = (:$ 2z) . (:$ s)
in reduce . apply_sz . compile . parseLTerm . wrap

Here we make use of the recursive function church to convert from the list-

representation of numbers to the Church numeral representation.

numBinary :: String —> CLTerm
numBinary =
let wrap expr = numericPrelude ++
"theta_church.(” ++ expr ++ 7)”
apply-sz = (:$ 2z) . (:$ s)
in reduce . apply.sz . compile . parseLTerm . wrap

Test some very simple arithmetic operations to make sure the reducer is correct

for some cases.

test_church_numerals
= TestList $ map (uncurry mkTest) $
[(141
, 7add_one.one”)
, (142
, "add_one._two”)
, (2%2
"mul_two_two”)
, ((6%6)%(6%6)
, "mul_(mul_six._six).(mul_six.six)”)

]

where

describe x y = "church_numerals:.” 4+ show x ++
7.=." ++ show y
mkTest x y = TestCase $

15

assertEqual (describe x y)
(toChurchNumCL x)
(churchNumBinary y)

test_numerals
= TestList $§ map (uncurry mkTest) $
[(1+1
, "theta_add_one_one”)
, (142
"theta.add_one_two”)
, (2%2
"theta_mul_two_two”)
, ((646)+(6+6)
"theta_add.(theta_add_six.six).(theta_add.six._six)”)

]

where
describe x y = "numerals:.” ++ show x ++
7 =." ++ show y
mkTest x y = TestCase $
assertEqual (describe x y)
(toChurchNumCL x)
(numBinary y)

Bundle the lists together into tests

tests = TestList [TestLabel ”"test_church_numerals” test_church_numerals

, TestLabel ”test_numerals” test_numerals
]

The entry point runs the tests.

main = do runTestTT tests

B Parser Library

module ParserLib
(Parser,
token ,
symbol ,
satisfy |

16

failparser ,
succeed ,
epsilon ,
first ,
star ,

plus ,
plus_bang ,
optionally ,
Sp

just ,

some ,
listOf ,
neListOf |
spaces ,
spacelist ,
nespacelist |,
pack

) where

type Parser symbol result = [symbol] —> [([symbol], result)]

Parsing tokens and symbols:

token :: Eq s => [s] —> Parser s [s]
token k xs
| k = take n xs = [(drop n xs, k)]
| otherwise = []
where n = length k

symbol :: Eq s => s — Parser s [s]

17

symbol s = token [s]
satisfy :: (s —> Bool) —> Parser s s

satisfy f (x:xs) = if (f x) then [(xs, x)] else []
satisfy f _ = []

Selection:

infixr 4 <|>
(<|>) :: (Parser s a) —> (Parser s a) —> Parser s a
(pl <|> p2) xs = pl xs ++ p2 xs

Sequence:

infixr 6 <&
(<&>) :: (Parser s a) —> (Parser s b) —> Parser s (a, b)
(pl <& p2) xs = [(xs2, (vl, v2)) |
(xsl, vl) <= pl xs,
(xs2, v2) <— p2 xsl]

failure and success:

failparser :: Parser s r

failparser _ = []

succeed :: r —> Parser s r
succeed v xs = [(xs, v)]
epsilon = succeed []

Semantic functions and some derived combinators.

infixl 5 <@
(<@) :: (Parser s a) —> (a —> b) —> Parser s b

(p0 <@ f) xs = [(ys, f v) | (ys, v) < p0 xs]

18

infixr 6 <&
(<&) :: (Parser s a) —> (Parser s b) —> Parser s a
p <& q = p <& q <@ fst

infixr 6 &>
(&>) :: (Parser s a) —> (Parser s b) —> Parser s b
p & q=p <& q <Q snd

B.1 Useful things

Allow spaces:

sp :: (Parser Char a) —> Parser Char a

9

sp p=p . dropWhile (==’ ")
Only take parses which consume all input:

just :: (Parser s a) —> Parser s a

just p = filter (null . fst) . p
Parse lists:

infixr 6 <:&>
(<:&>) :: (Parser s a) —> (Parser s [a]) —> Parser s [a]

p <&> q = p <& q <@ (uncurry (:))
Kleene *

star :: (Parser s a) —> Parser s [a]
star p = p <:&> star p
<|> epsilon

Take the first parse

first :: (Parser s a) —> Parser s a

first p = (take 1) . p

some p = snd . head . just p

19

Kleene *

plus :: (Parser s a) —> Parser s [a]
plus p = p <&> star p
plus_bang :: (Parser s a) —> Parser s [a]

plus_bang = first . plus
Allow optional items:

optionally :: (Parser s a) —> Parser s [a]
optionally p = p <@ (\x —> [x])
<|> epsilon

Parsing lists separated by menaingless separators inside meaningless brackets:

pack :: (Parser s a) —> (Parser s b) —>

(Parser s ¢) —> Parser s b

pack opensym p closesym = opensym &> p <& closesym

listOf :: (Parser s a) —>
(Parser s b) —>
Parser s [a]
listOf p s = p <&> star (s &> p)

<|> epsilon
neListOf p s = p <:&> star (s &> p)
spaces :: Parser Char String
spaces = (first . plus) (satisfy isSpace)
spacelist :: (Parser Char a) —> Parser Char [a]

spacelist p = listOf p spaces

20

nespacelist p = neListOf p spaces

isSpace ¢ = ¢ =

21

